

Longitudinal Changes in the North Star Ambulatory Assessment and Leg Muscle Fat Fraction in DMD

Forbes SC¹, Nair K¹, Willcocks RJ¹, Barnard AM¹, Lott DJ¹, Senesac CR¹, Rock K¹, Finanger E², Brandsema J³, Subramony S⁴, Wang DJ⁵, Rooney WD⁶, Daniels MJ⁷, Walter GA⁸, Vandenborne K¹

¹Department of Physical Therapy, University of Florida; ²Division of Neurology, School of Medicine, Oregon Health & Science University; ³Department of Pediatrics and Neurology, The Children's Hospital of Philadelphia; ⁴Department of Neurology, University of Florida; ⁵Department of Radiology, The Children's Hospital of Philadelphia; ⁶Advanced Imaging Research Center, Oregon Health & Science University; ⁷Department of Statistics, University of Florida; ⁸Department of Physiology and Aging, University of Florida

INTRODUCTION

- North Star Ambulatory Assessment (NSAA) is a functional assessment scale validated for ambulatory individuals with Duchenne muscular dystrophy (DMD).^{1,2}
- NSAA has been utilized to assess disease progression and efficacy of interventions in DMD.^{3,4}
- Furthermore, proton magnetic resonance spectroscopy (¹H-MRS) measures of fat fraction are reproducible, correlate with clinical functional tests, and are sensitive to disease progression and treatments in DMD.5-9
- However, the relationship between NSAA and MR measures of fat fraction is less established.

AIM

To evaluate the relationship of NSAA and fat fraction measures of lower extremity muscles in a longitudinal study of DMD.

METHODS

Subjects: A total of 90 ambulatory subjects with DMD (age 4-18 years at baseline) from the ImagingNMD project were included in this study, with time points acquired yearly for up to 3 years.

MR data:

 Single voxel ¹H-MRS data were acquired at 3T using stimulated echo acquisition with (STEAM) mode relaxation corrections to measure fat fraction from the (Sol) and soleus vastus lateralis (VL; Figure 1).⁵⁻⁹

Functional data:

- NSAA total score was the sum of calculated as scores on 17 ordinal tests, scored as 0, 1, or 2, with a 2 indicating normal activity.¹
- Figure 1. Representative voxel placement in the soleus and vastus lateralis and spectra acquired using

single voxel ¹H-MRS.

 Relationships among measures were evaluated using nonparametric correlation and probability analyses.

¹H₂O

Vastus lateralis

Soleus

RESULTS

Figure 2. Longitudinal North Star Ambulatory Assessment (NSAA) total scores in individuals with Duchenne muscular dystrophy (DMD) plotted relative to age.

RESULTS (Continued)

Figure 3. There was a significant relationship (p<0.001) between NSAA total score and fat fraction of the soleus (A) and vastus lateralis (B). Furthermore, with increasing fat fraction categories, there was, on average, a drop in NSAA total score (C,D).

NSAA total score **Figure** tended increase at low fat (less than ~0.1), then fraction decline increasing fat with (A). Three-year fraction longitudinal changes in fat fraction correlated with NSAA total score changes (p<0.01; B).

Figure 5. The loss of ability to perform the more difficult tasks in the NSAA occurred at a lower fat fraction (A). Kaplan-Meier plot for loss of ability to stand and run in relation to VL fat fraction in DMD (B).

Fat fraction (VL)

CONCLUSIONS

 Overall, NSAA was strongly correlated with muscle fat fraction determined by ¹H-MRS, and our findings are consistent with the notion that muscle fat fraction can be used to predict functional abilities included in NSAA.

REFERENCES

- 1. Scott E, Eagle M, Mayhew A, et al., Physiother Res Int. 17(2):101-109, 2012. doi: 10.1002/pri.520
- 2. Benemei et al., Acta Neurol Belg. 2024. doi: 10.1007/s13760-024-02600-2
- 3. Mah et al., JAMA Netw Open. 4;5 (1): e2144178, 2022. 4. Godi et al., Ann Clin Transl Neurol. 16;3(8):607-22, 2016.

participation in the study.

- 5. Forbes et al., Radiology 269(1):198-207, 2013. doi: 10.1148/radiol.13121948.
- 6. Arpan et al., Neurology 9;83(11):974-80, 2014. doi: 10.1212/WNL.00000000000775
- 7. Willcocks et al., Ann Clin Transl Neurol. 2024 Jan;11(1):67-78. doi: 10.1002/acn3.51933.
- 8. Willcocks et al. JAMA Netw Open. 2021 Jan 4;4(1):e2031851. doi:
- 10.1001/jamanetworkopen.2020.31851. 9. Barnard et al., PlosOne. 19;13(3):e0194283, 2018. doi: 10.1371/journal.pone.0194283. eCollection 2018.

ACKNOWLEDGMENTS

Supported by NIH (R01-AR056973) and the National High Magnetic Field Laboratory NIH S10RR025671. Authors have no conflicts of interest. We thank the participants and their families for their